

Welcome to sect’s documentation!

Note

If object is not listed in documentation
it should be considered as implementation detail
that can change and should not be relied upon.

decomposition module

	
class sect.decomposition.Graph(root: Node)

	Represents trapezoidal decomposition graph.

	
classmethod from_multisegment(multisegment: ~ground.hints.Multisegment, *, shuffler: ~typing.Callable[[~typing.MutableSequence], None] = <bound method Random.shuffle of <random.Random object>>, context: ~ground.base.Context) → Graph

	Constructs trapezoidal decomposition graph of given multisegment.

Based on incremental randomized algorithm by R. Seidel.

	Time complexity:
	O(segments_count * log segments_count) expected,
O(segments_count ** 2) worst

	Memory complexity:
	O(segments_count)

where segments_count = len(multisegment.segments)

	Reference:
	https://doi.org/10.1016%2F0925-7721%2891%2990012-4
https://www.cs.princeton.edu/courses/archive/fall05/cos528/handouts/A%20Simple%20and%20fast.pdf

	Parameters

	
	multisegment – target multisegment.

	shuffler – function which mutates sequence by shuffling its elements,
required for randomization.

	context – geometric context.

	Returns

	trapezoidal decomposition graph of the multisegment.

>>> from ground.base import get_context
>>> context = get_context()
>>> Multisegment, Point, Segment = (context.multisegment_cls,
... context.point_cls,
... context.segment_cls)
>>> graph = Graph.from_multisegment(
... Multisegment([Segment(Point(0, 0), Point(1, 0)),
... Segment(Point(0, 0), Point(0, 1))]),
... context=context
...)
>>> Point(1, 0) in graph
True
>>> Point(0, 1) in graph
True
>>> Point(1, 1) in graph
False
>>> graph.locate(Point(1, 0)) is Location.BOUNDARY
True
>>> graph.locate(Point(0, 1)) is Location.BOUNDARY
True
>>> graph.locate(Point(1, 1)) is Location.EXTERIOR
True

	
classmethod from_polygon(polygon: ~ground.hints.Polygon, *, shuffler: ~typing.Callable[[~typing.MutableSequence], None] = <bound method Random.shuffle of <random.Random object>>, context: ~ground.base.Context) → Graph

	Constructs trapezoidal decomposition graph of given polygon.

Based on incremental randomized algorithm by R. Seidel.

	Time complexity:
	O(vertices_count * log vertices_count) expected,
O(vertices_count ** 2) worst

	Memory complexity:
	O(vertices_count)

where

vertices_count = (len(polygon.border.vertices)
 + sum(len(hole.vertices)
 for hole in polygon.holes)
 + len(extra_points) + len(extra_constraints))

	Reference:
	https://doi.org/10.1016%2F0925-7721%2891%2990012-4
https://www.cs.princeton.edu/courses/archive/fall05/cos528/handouts/A%20Simple%20and%20fast.pdf

	Parameters

	
	polygon – target polygon.

	shuffler – function which mutates sequence by shuffling its elements,
required for randomization.

	context – geometric context.

	Returns

	trapezoidal decomposition graph of the border and holes.

>>> from ground.base import get_context
>>> context = get_context()
>>> Contour, Point, Polygon = (context.contour_cls, context.point_cls,
... context.polygon_cls)
>>> graph = Graph.from_polygon(
... Polygon(Contour([Point(0, 0), Point(6, 0), Point(6, 6),
... Point(0, 6)]),
... [Contour([Point(2, 2), Point(2, 4), Point(4, 4),
... Point(4, 2)])]),
... context=context
...)
>>> Point(1, 1) in graph
True
>>> Point(2, 2) in graph
True
>>> Point(3, 3) in graph
False
>>> graph.locate(Point(1, 1)) is Location.INTERIOR
True
>>> graph.locate(Point(2, 2)) is Location.BOUNDARY
True
>>> graph.locate(Point(3, 3)) is Location.EXTERIOR
True

	
property height: int

	Returns height of the root node.

	
locate(point: Point) → Location

	Finds location of point relative to decomposed geometry.

	Time complexity:
	O(self.height)

	Memory complexity:
	O(1)

triangulation module

	
class sect.triangulation.QuadEdge(start: Optional[Point] = None, left_from_start: Optional[QuadEdge] = None, rotated: Optional[QuadEdge] = None, *, context: Context)

	
	Based on:
	quad-edge data structure.

	Reference:
	https://en.wikipedia.org/wiki/Quad-edge
http://www.sccg.sk/~samuelcik/dgs/quad_edge.pdf

	
classmethod from_endpoints(start: Point, end: Point, *, context: Context) → QuadEdge

	Creates new edge from endpoints.

	
property end: Point

	aka “Dest” in L. Guibas and J. Stolfi notation.

	
property left_from_end: QuadEdge

	aka “Lnext” in L. Guibas and J. Stolfi notation.

	
property left_from_start: QuadEdge

	aka “Onext” in L. Guibas and J. Stolfi notation.

	
property opposite: QuadEdge

	aka “Sym” in L. Guibas and J. Stolfi notation.

	
property right_from_end: QuadEdge

	aka “Rprev” in L. Guibas and J. Stolfi notation.

	
property right_from_start: QuadEdge

	aka “Oprev” in L. Guibas and J. Stolfi notation.

	
property rotated: QuadEdge

	aka “Rot” in L. Guibas and J. Stolfi notation.

	
property start: Point

	aka “Org” in L. Guibas and J. Stolfi notation.

	
connect(other: QuadEdge) → QuadEdge

	Connects the edge with the other.

	
delete() → None

	Deletes the edge.

	
orientation_of(point: Point) → Orientation

	Returns orientation of the point relative to the edge.

	
splice(other: QuadEdge) → None

	Splices the edge with the other.

	
swap() → None

	Swaps diagonal in a quadrilateral formed by triangles
in both clockwise and counterclockwise order around the start.

	
class sect.triangulation.Triangulation(left_side: QuadEdge, right_side: QuadEdge, context: Context)

	Represents triangulation.

	
classmethod constrained_delaunay(polygon: Polygon, *, extra_constraints: Sequence[Segment] = (), extra_points: Sequence[Point] = (), context: Context) → Triangulation

	Constructs constrained Delaunay triangulation of given polygon
(with potentially extra points and constraints).

Based on

	divide-and-conquer algorithm by L. Guibas & J. Stolfi
for generating Delaunay triangulation,

	algorithm by S. W. Sloan for adding constraints to Delaunay
triangulation,

	clipping algorithm by F. Martinez et al. for deleting in-hole
triangles.

	Time complexity:
	O(vertices_count * log vertices_count) for convex polygons
without extra constraints,
O(vertices_count ** 2) otherwise

	Memory complexity:
	O(vertices_count)

where

vertices_count = (len(polygon.border.vertices)
 + sum(len(hole.vertices)
 for hole in polygon.holes)
 + len(extra_points) + len(extra_constraints))

	Reference:
	http://www.sccg.sk/~samuelcik/dgs/quad_edge.pdf
https://www.newcastle.edu.au/__data/assets/pdf_file/0019/22519/23_A-fast-algortithm-for-generating-constrained-Delaunay-triangulations.pdf
https://doi.org/10.1016/j.advengsoft.2013.04.004
http://www4.ujaen.es/~fmartin/bool_op.html

	Parameters

	
	polygon – target polygon.

	extra_points – additional points to be presented in the triangulation.

	extra_constraints – additional constraints to be presented in the triangulation.

	context – geometric context.

	Returns

	triangulation of the border, holes & extra points
considering constraints.

	
classmethod delaunay(points: Sequence[Point], *, context: Context) → Triangulation

	Constructs Delaunay triangulation of given points.

Based on divide-and-conquer algorithm by L. Guibas & J. Stolfi.

	Time complexity:
	O(len(points) * log len(points))

	Memory complexity:
	O(len(points))

	Reference:
	http://www.sccg.sk/~samuelcik/dgs/quad_edge.pdf

	Parameters

	
	points – 3 or more points to triangulate.

	context – geometric context.

	Returns

	triangulation of the points.

	
delete(edge: QuadEdge) → None

	Deletes given edge from the triangulation.

	
triangles() → List[Contour]

	Returns triangles of the triangulation.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sect	

 	
 	
 sect.decomposition	

 	
 	
 sect.triangulation	

Index

 C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | O
 | Q
 | R
 | S
 | T

C

 	
 	connect() (sect.triangulation.QuadEdge method)

 	
 	constrained_delaunay() (sect.triangulation.Triangulation class method)

D

 	
 	delaunay() (sect.triangulation.Triangulation class method)

 	
 	delete() (sect.triangulation.QuadEdge method)

 	(sect.triangulation.Triangulation method)

E

 	
 	end (sect.triangulation.QuadEdge property)

F

 	
 	from_endpoints() (sect.triangulation.QuadEdge class method)

 	
 	from_multisegment() (sect.decomposition.Graph class method)

 	from_polygon() (sect.decomposition.Graph class method)

G

 	
 	Graph (class in sect.decomposition)

H

 	
 	height (sect.decomposition.Graph property)

L

 	
 	left_from_end (sect.triangulation.QuadEdge property)

 	
 	left_from_start (sect.triangulation.QuadEdge property)

 	locate() (sect.decomposition.Graph method)

M

 	
 	
 module

 	sect.decomposition

 	sect.triangulation

O

 	
 	opposite (sect.triangulation.QuadEdge property)

 	
 	orientation_of() (sect.triangulation.QuadEdge method)

Q

 	
 	QuadEdge (class in sect.triangulation)

R

 	
 	right_from_end (sect.triangulation.QuadEdge property)

 	
 	right_from_start (sect.triangulation.QuadEdge property)

 	rotated (sect.triangulation.QuadEdge property)

S

 	
 	
 sect.decomposition

 	module

 	
 sect.triangulation

 	module

 	
 	splice() (sect.triangulation.QuadEdge method)

 	start (sect.triangulation.QuadEdge property)

 	swap() (sect.triangulation.QuadEdge method)

T

 	
 	triangles() (sect.triangulation.Triangulation method)

 	
 	Triangulation (class in sect.triangulation)

 nav.xhtml

 Table of Contents

 		
 Welcome to sect’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

